Table of Contents
Comprendere l’importanza del pH in chimica e come funzionano i misuratori di pH
Chimica del pHmetro: comprendere l’importanza del pH in chimica e come funzionano i pHmetri
Modello | Controller in linea di conducibilità/concentrazione CIT-8800 |
Concentrazione | 1.NaOH:(0~15)% o(25~50)%; 2.HNO3:(0~25) % o (36~82) % ; 3.Curve di concentrazione definite dall’utente |
Conduttività | (500~2.000.000)uS/cm |
TDS | (250~1.000.000)ppm |
Temp. | (0~120)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\°C |
Risoluzione | Conduttività: 0,01uS/cm; Concentrazione: 0,01%; TDS:0,01 ppm, Temp.: 0,1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\℃ |
Precisione | Conduttività: (500~1000)uS/cm +/-10uS/cm; (1~2000)mS/cm+/-1,0% |
TDS: livello 1,5, Temp.: +/-0,5\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\℃ | |
Temp. compenso | Intervallo: (0~120)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\°C; elemento: Pt1000 |
Porta di comunicazione | Protocollo RS485.Modbus RTU |
Uscita analogica | Due canali isolati/trasportabili (4-20)mA, strumento/trasmettitore per la selezione |
Uscita di controllo | Interruttore fotoelettrico a semiconduttore a triplo canale, interruttore programmabile, impulso e frequenza |
Ambiente di lavoro | Temp.(0~50)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\℃; umidità relativa <95%RH (non-condensing) |
Ambiente di archiviazione | Temp.(-20~60)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\℃;Umidità relativa \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\\\\\\\\\≤85% UR (nessuna condensa) |
Alimentazione | DC 24 V+15% |
Livello di protezione | IP65 (con coperchio posteriore) |
dimensione | 96 mmx96 mmx94 mm (AxLxP) |
Dimensione foro | 9 mm x 91 mm (AxL) |
Nel campo della chimica, il pH è un concetto cruciale che gioca un ruolo significativo in vari processi chimici. Il termine “pH” sta per “potenziale di idrogeno” ed è una misura dell’acidità o dell’alcalinità di una soluzione. La scala del pH varia da 0 a 14, dove 7 è neutro, valori più bassi indicano acidità e valori più alti indicano alcalinità. Comprendere il pH è essenziale in chimica poiché influenza il comportamento delle sostanze chimiche, dei sistemi biologici e dei processi ambientali.
Il pH di una soluzione è determinato dalla concentrazione di ioni idrogeno (H+) presenti nella soluzione. Nelle soluzioni acide, la concentrazione di ioni idrogeno è elevata, con conseguente basso valore di pH. Al contrario, nelle soluzioni alcaline, la concentrazione di ioni idrogeno è bassa, portando ad un valore di pH elevato. Il pH di una soluzione può avere un impatto significativo sulle reazioni chimiche, sulla solubilità delle sostanze e sul comportamento dei sistemi biologici.
Per misurare il pH di una soluzione, scienziati e ricercatori utilizzano pHmetri, che sono strumenti essenziali nel settore di chimica. I pHmetri sono dispositivi elettronici che misurano il pH di una soluzione rilevando la differenza di potenziale elettrico tra un elettrodo di riferimento e un elettrodo di vetro immerso nella soluzione. L’elettrodo di vetro contiene una membrana speciale che interagisce selettivamente con gli ioni idrogeno, generando una tensione proporzionale al pH della soluzione.
Il funzionamento di un pHmetro coinvolge diversi componenti chiave, tra cui l’elettrodo di riferimento, l’elettrodo di vetro e i circuiti elettronici. L’elettrodo di riferimento è tipicamente un elettrodo di argento-cloruro d’argento immerso in una soluzione di cloruro di potassio, che fornisce un potenziale di riferimento stabile. L’elettrodo di vetro è costituito da una sottile membrana di vetro che consente il passaggio degli ioni idrogeno, generando una tensione che viene misurata dai circuiti elettronici del pHmetro.
Quando si utilizza un pHmetro, è essenziale calibrare il dispositivo utilizzando un tampone standard soluzioni con valori di pH noti. Questo processo di calibrazione garantisce l’accuratezza e l’affidabilità delle misurazioni del pH ottenute dallo strumento. Una volta calibrato, il pHmetro può essere utilizzato per misurare il pH di varie soluzioni, comprese soluzioni acquose, fluidi biologici e flussi di processi industriali.
I pHmetri sono ampiamente utilizzati in vari campi della chimica, tra cui chimica analitica, chimica ambientale e biochimica. Nella chimica analitica, i misuratori di pH vengono utilizzati per determinare l’acidità o l’alcalinità di un campione, che è fondamentale nelle titolazioni, nelle reazioni complessometriche e in altre tecniche analitiche. Nella chimica ambientale, i misuratori di pH vengono utilizzati per monitorare il pH di corpi idrici naturali, campioni di terreno e flussi di acque reflue, fornendo preziose informazioni sulla salute degli ecosistemi e sull’impatto delle attività umane sull’ambiente. In biochimica, i pHmetri vengono utilizzati per studiare il comportamento di enzimi, proteine e altre molecole biologiche, poiché la loro attività e stabilità sono fortemente influenzate dal pH.
In conclusione, il pH è un concetto fondamentale in chimica che influenza un’ampia gamma di parametri processi chimici, biologici e ambientali. I misuratori di pH sono strumenti essenziali per misurare il pH delle soluzioni in modo accurato e affidabile, fornendo informazioni preziose per la ricerca scientifica, i processi industriali e il monitoraggio ambientale. Comprendere l’importanza del pH in chimica e il funzionamento dei pHmetri è fondamentale per chiunque lavori nel campo della chimica, poiché consente loro di prendere decisioni informate e trarre conclusioni significative dai propri esperimenti e osservazioni.